

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/createsend/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/createsend/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

createsend-python history

v4.2.2 - 1 Jul, 2017

	Fix bug where the six module was not set as a installation dependency.

	Remove relative imports.

	Improve Python 3 support.

	Use PEP 8 formatting.

	See #43 [https://github.com/campaignmonitor/createsend-python/pull/43] for details.

v4.2.1 - 19 Dec, 2016

	Decode JSON API responses using UTF-8: (#38 [https://github.com/campaignmonitor/createsend-python/pull/38])

v4.2.0 - 10 Oct, 2016

	Support Python 3: (#27 [https://github.com/campaignmonitor/createsend-python/pull/27])

	Use CGI SERVER_NAME in UA string: (#32 [https://github.com/campaignmonitor/createsend-python/pull/32])

v4.1.1 - 7 Aug, 2015

	Fixed the MANIFEST file so that it includes new Transactional files (#25).

v4.1.0 - 4 Aug, 2015

	Added support for Transactional Email

v4.0.0 - 19 Feb, 2014

	Removed CreateSend.apikey to promote using OAuth rather than basic auth with an API key.

	Started using the https://api.createsend.com/api/v3.1/ API endpoint.

	Added support for new segments structure.

	Segments now includes a new RuleGroups member, instead of a Rules member.

So for example, when you previously would have created a segment like so:

segment.create(list.ListID, 'Python API Segment', [{ "Subject": "EmailAddress", "Clauses": ["CONTAINS pyapi.com"] }])

You would now do this:

segment.create(list.ListID, 'Python API Segment', [{ "Rules": [{ "RuleType": "EmailAddress", "Clause": "CONTAINS pyapi.com" }] }])

	The Add Rule call is now Add Rule Group, taking a rulegroup argument instead of a subject & clauses argument.

Segment.add_rulegroup(self, rulegroup):

So for example, when you previously would have added a rule like so:

segment.add_rule("EmailAddress", ["CONTAINS pyapi.com"])

You would now do this:

segment.add_rulegroup({ "Rules": [{ "RuleType": "EmailAddress", "Clause": "CONTAINS pyapi.com" }] })

v3.4.0 - 25 Jan, 2014

	Modified several methods so that unnecessary arguments are no longer needed.

The following methods were updated:

	Administrator.get()

	Person.get()

	Subscriber.get()

As an example using, previously you would write:

subscriber = Subscriber(auth, 'listid', 'me@test.com').get('listid', 'me@test.com')

Now you can write:

subscriber = Subscriber(auth, 'listid', 'me@test.com').get()

v3.3.0 - 13 Jul, 2013

	Added support for validating SSL certificates to avoid man-in-the-middle attacks.

v3.2.0 - 16 May, 2013

	Added Python version and platform details to default user agent string.

	Added support for setting a custom user agent string.

You can set a custom user agent string to be used for API calls by doing the following:

CreateSend.user_agent = "custom user agent"

v3.1.0 - 15 Apr, 2013

	Added support for single sign on [http://www.campaignmonitor.com/api/account/#single_sign_on] which allows initiation of external login sessions to Campaign Monitor.

v3.0.0 - 25 Mar, 2013

	Added support for authenticating using OAuth. See the README for full usage instructions.

	Refactored authentication so that it is always done at the instance level. This introduces some breaking changes, which are clearly explained below.

	Authentication is now always done at the instance level.

So when you previously would have authenticated using an API key as follows:

CreateSend.api_key = 'your_api_key'
cs = CreateSend()
clients = cs.clients()

If you want to authenticate using an API key, you should now do this:

cs = CreateSend({'api_key': 'your_api_key'})
clients = cs.clients()

	Instances of any subclasses of CreateSendBase are now always created by passing an auth hash as the first argument.

So for example, when you previously would have called Client() like so:

CreateSend.api_key 'your api key'
cl = Client('your client id')

You now call CreateSend::Client.new like so:

auth = {'api_key': 'your api key'}
cl = Client(auth, 'your client id')

v2.6.0 - 17 Dec, 2012

	Created objects (clients, campaigns, lists, segments, and templates) now
retain identifiers they are given when created. This allows the following code
to be written:

client = Client()
client.create("Company Name", "(GMT+10:00) Canberra, Melbourne, Sydney",
 "Australia")
details = client.details()

Previously, this code would have been written as follows:

client = Client()
client_id = client.create("Company Name",
 "(GMT+10:00) Canberra, Melbourne, Sydney", "Australia")
client.client_id = client_id
details = client.details()

v2.5.0 - 11 Dec, 2012

	Added support for including from name, from email, and reply to email in
drafts, scheduled, and sent campaigns.

	Added support for campaign text version urls.

	Added support for transferring credits to/from a client.

	Added support for getting account billing details as well as client credits.

	Made all date fields optional when getting paged results.

v2.4.1 - 11 Nov, 2012

	Added the ability to set api_key for a CreateSend instance, rather than
only at the class level.

v2.4.0 - 5 Nov, 2012

	Added Campaign.email_client_usage().

	Added support for ReadsEmailWith field on subscriber objects.

	Added support for retrieving unconfirmed subscribers for a list.

	Added support for suppressing email addresses.

	Added support for retrieving spam complaints for a campaign, as well as
adding SpamComplaints field to campaign summary output.

	Added VisibleInPreferenceCenter field to custom field output.

	Added support for setting preference center visibility when creating custom
fields.

	Added the ability to update a custom field name and preference visibility.

	Added documentation explaining that text_url may now be None or an empty
string when creating a campaign.

v2.3.0 - 10 Oct, 2012

	Added support for creating campaigns from templates.

	Added support for unsuppressing an email address.

	Improved documentation and tests for getting active subscribers. Clearly
documented the data structure for multi option multi select fields.

v2.2.0 - 17 Sep, 2012

	Added WorldviewURL field to campaign summary response.

	Added Latitude, Longitude, City, Region, CountryCode, and CountryName fields
in campaign opens and clicks responses.

v2.1.0 - 30 Aug, 2012

	Added support basic / unlimited pricing.

v2.0.0 - 22 Aug, 2012

	Added support for UnsubscribeSetting field when creating, updating, and
getting list details.

	Added support for including AddUnsubscribesToSuppList and
ScrubActiveWithSuppList fields when updating a list.

	Added support for getting all client lists to which a subscriber with a
specific email address belongs.

	Removed deprecated warnings and disallowed calls to be made in a deprecated
manner.

v1.1.1 - 2 Aug, 2012

	Improved documentation to indicate support for Python 2.5, 2.6, and 2.7

	Added support for specifying whether subscription-based autoresponders should
be restarted when adding or updating subscribers.

v1.1.0 - 15 Jun, 2012

	Added Travis CI support.

	Added support for newly released team management functionality.

v1.0.2 - 2 Dec, 2011

	Added support for compatibility with Python 2.5 by using old “except” syntax.

v1.0.1 - 31 Oct, 2011

	Added support for deleting a subscriber.

	Added support for specifying a ‘clear’ field when updating or importing
subscribers.

	Added support for queuing subscription-based autoresponders when importing
subscribers.

	Added support for retrieving deleted subscribers.

	Added support for including more social sharing stats in campaign summary.

	Added support for unscheduling a campaign.

v1.0.0 - 26 Oct, 2011

	Initial release which support current Campaign Monitor API.

createsend

A Python library which implements the complete functionality of the Campaign Monitor API [http://www.campaignmonitor.com/api/]. Requires Python 2.6, 2.7, 3.3, 3.4, or 3.5.

Installation

pip install createsend

Authenticating

The Campaign Monitor API supports authentication using either OAuth or an API key.

Using OAuth

Depending on the environment you are developing in, you may wish to use a Python OAuth library to get access tokens for your users. If you use Flask [http://flask.pocoo.org/], you may like to refer to this example application [https://gist.github.com/jdennes/4754097], which uses the Flask-OAuth [http://pythonhosted.org/Flask-OAuth/] package to authenticate.

If you don’t use an OAuth library, you will need to manually get access tokens for your users by following the instructions included in the Campaign Monitor API documentation [http://www.campaignmonitor.com/api/getting-started/#authenticating_with_oauth]. This package provides functionality to help you do this, as described below. There’s also another Flask example application [https://gist.github.com/jdennes/4761254] you may wish to reference, which doesn’t depend on any OAuth libraries.

The first thing your application should do is redirect your user to the Campaign Monitor authorization URL where they will have the opportunity to approve your application to access their Campaign Monitor account. You can get this authorization URL by using the authorize_url() function, like so:

from createsend import *

cs = CreateSend()
authorize_url = cs.authorize_url(
 client_id='Client ID for your application',
 redirect_uri='Redirect URI for your application',
 scope='The permission level your application requires',
 state='Optional state data to be included'
)
Redirect your users to authorize_url.

If your user approves your application, they will then be redirected to the redirect_uri you specified, which will include a code parameter, and optionally a state parameter in the query string. Your application should implement a handler which can exchange the code passed to it for an access token, using the exchange_token() function like so:

from createsend import *

cs = CreateSend()
access_token, expires_in, refresh_token = cs.exchange_token(
 client_id='Client ID for your application',
 client_secret='Client Secret for your application',
 redirect_uri='Redirect URI for your application',
 code='A unique code for your user' # Get the code parameter from the query string
)
Save access_token, expires_in, and refresh_token.

At this point you have an access token and refresh token for your user which you should store somewhere convenient so that your application can look up these values when your user wants to make future Campaign Monitor API calls.

Once you have an access token and refresh token for your user, you can authenticate and make further API calls like so:

from createsend import *

cs = CreateSend({
 'access_token': 'your access token',
 'refresh_token': 'your refresh token' })
clients = cs.clients()

All OAuth tokens have an expiry time, and can be renewed with a corresponding refresh token. If your access token expires when attempting to make an API call, the ExpiredOAuthToken exception will be raised, so your code should handle this. Here’s an example of how you could do this:

from createsend import *

try:
 cs = CreateSend({
 'access_token': 'your access token',
 'refresh_token': 'your refresh token' })
 clients = cs.clients()
except ExpiredOAuthToken as eot:
 access_token, expires_in, refresh_token = cs.refresh_token()
 # Save your updated access_token, expires_in, and refresh_token.
 clients = cs.clients()
except Exception as e:
 print("Error: %s" % e)

Using an API key

from createsend import *

cs = CreateSend({'api_key': 'your api key'})
clients = cs.clients()

Basic usage

This example of listing all your clients and their campaigns demonstrates basic usage of the library and the data returned from the API:

from createsend import *

auth = {
 'access_token': 'your access token',
 'refresh_token': 'your refresh token' }
cs = CreateSend(auth)
clients = cs.clients()

for cl in clients:
 print("Client: %s" % cl.Name)
 client = Client(auth, cl.ClientID)
 print("- Campaigns:")
 for cm in client.campaigns():
 print(" - %s" % cm.Subject)

Running this example will result in something like:

Client: First Client
- Campaigns:
 - Newsletter Number One
 - Newsletter Number Two
Client: Second Client
- Campaigns:
 - News for January 2013

Handling errors

If the Campaign Monitor API returns an error, an exception will be raised. For example, if you attempt to create a campaign and enter empty values for subject and other required fields:

from createsend import *

campaign = Campaign({
 'access_token': 'your access token',
 'refresh_token': 'your refresh token' })

try:
 id = campaign.create("4a397ccaaa55eb4e6aa1221e1e2d7122", "", "", "", "", "", "", "", [], [])
 print("New campaign ID: %s" % id)
except BadRequest as br:
 print("Bad request error: %s" % br)
 print("Error Code: %s" % br.data.Code)
 print("Error Message: %s" % br.data.Message)
except Exception as e:
 print("Error: %s" % e)

Running this example will result in:

Bad request error: The CreateSend API responded with the following error - 304: Campaign Subject Required
Error Code: 304
Error Message: Campaign Subject Required

Expected input and output

The best way of finding out the expected input and output of a particular method in a particular class is to use the unit tests as a reference.

For example, if you wanted to find out how to call the Subscriber.add() method, you would look at the file test/test_subscriber.py [https://github.com/campaignmonitor/createsend-python/blob/master/test/test_subscriber.py]

def test_add_with_custom_fields(self):
 self.subscriber.stub_request("subscribers/%s.json" % self.list_id, "add_subscriber.json")
 custom_fields = [{ "Key": 'website', "Value": 'http://example.com/' }]
 email_address = self.subscriber.add(self.list_id, "subscriber@example.com", "Subscriber", custom_fields, True)
 self.assertEquals(email_address, "subscriber@example.com")

Contributing

Please check the guidelines for contributing [https://github.com/campaignmonitor/createsend-python/blob/master/CONTRIBUTING.md] to this repository.

Releasing

Please check the instructions for releasing [https://github.com/campaignmonitor/createsend-python/blob/master/RELEASE.md] the createsend package.

This stuff should be green

[image: Build Status] [http://travis-ci.org/campaignmonitor/createsend-python] [image: Coverage Status] [https://coveralls.io/r/campaignmonitor/createsend-python]

Releasing createsend-python

Requirements

	You must have a PyPI [https://pypi.python.org/pypi] account and must be an owner or maintainer of the createsend [https://pypi.python.org/pypi/createsend/] package.

Prepare the release

	Increment __version_info__ in the createsend/createsend.py file, ensuring that you use Semantic Versioning [http://semver.org/].

	Add an entry to HISTORY.md which clearly explains the new release.

	Commit your changes:

git commit -am "Version X.Y.Z"

	Tag the new version:

git tag -a vX.Y.Z -m "Version X.Y.Z"

	Push your changes to GitHub, including the tag you just created:

git push origin master --tags

	Ensure that all tests [https://travis-ci.org/campaignmonitor/createsend-python] pass, and that coverage [https://coveralls.io/r/campaignmonitor/createsend-python] is maintained or improved.

	Add a new GitHub Release [https://github.com/campaignmonitor/createsend-python/releases] using the newly created tag.

Build the package

rake build

This builds a source distribution of the package locally to a file named something like dist/createsend-X.Y.Z.tar.gz. You’re now ready to release the package.

Release the package

rake release

This publishes the package to PyPI [https://pypi.python.org/pypi/createsend/]. You should see the newly published version of the package there. All done!

Guidelines for contributing

	Fork the repository [https://help.github.com/articles/fork-a-repo].

	Create a topic branch [http://learn.github.com/p/branching.html].

	Make your changes, including tests for your changes which maintain coverage [https://coveralls.io/r/campaignmonitor/createsend-python].

	Ensure that all tests pass, by running rake.

	It should go without saying, but do not increment the version number in your commits.

	Submit a pull request [https://help.github.com/articles/using-pull-requests].

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/comment-close.png

_static/up.png

_static/minus.png

